Solving Exponential Equations

We have discussed three methods to use when solving exponential equations.

- 1) IF both sides of the equation can be written having the same base, we can use the one-to-one property of the exponential function and equate the exponents. (If $a^x = a^y$ then x=y)
 - $3^{2x-1} = 27$ $3^{2x-1} = 3^3$ => => 2x-1=3 x=2 =>
- 2) We can use the definition of logarithmic notation($y=log_ax$ means $a^y=x$) to rewrite the log in exponential form, thus isolating the variable.

Ex.
$$5^{x} = 12$$

=> $x = \log_{5} 12$

3) We can use the properties of logarithms to bring the exponent down.

 5^{x} = 12 Take the log or ln of both sides. Ex.

Ex.

Ex.

$$7^{x+3} = 8 \text{ Take the log or In of both sides.}$$
=> In 7^{x+3} = In 8
=> (x+3) In7 = In8
=> xIn7 + 3In7 = In8
=> xIn7 = In8 - 3In7
=> x = $\frac{\ln 8 - 3 \ln 7}{\ln 7} (exact) \approx -1.93$

Ex.

	$4^{2-5x} = 6^x$ Take the log or ln of both sides.
=>	$\ln 4^{2-5x} = \ln 6^{x}$
=>	(2-5x) ln4 = x ln6
=>	$2\ln 4 - 5x\ln 4 = x\ln 6$ Gather terms with x on one side.
=>	$2\ln 4 = 5x \ln 4 + x \ln 6$ Factor out the x.
=>	$2 \ln 4 = x(5\ln 4 + \ln 6)$
=>	$x = \frac{2 \ln 4}{5 \ln 4 + \ln 6} (exact) \approx 0.32$

Solving Logarithmic Equations

We have discussed two methods to use when solving logarithmic equations.

 If the equation contains <u>only</u> logarithmic terms, each having the same base, we use the oneto-one property of logarithms (log_ax= log_ay => x=y) to equate the arguments.
 Ex. log_a(x-1)= log_a12

$$log_3(x-1) = log_3 12$$

=> x-1=12
=> x=13

We may have to first use the properties of logarithms to first obtain a <u>single</u> logarithmic term on each side. (Cannot simply "cancel logs")

Ex.
$$\log_5(2x) - \log_5(7) = \log_5(x+1)$$

=> $\log_5\left(\frac{2x}{7}\right) = \log_5(x+1)$
=> $\frac{2x}{7} = x+1$
=> $2x = 7(x+1)$
=> $-5x = 7$
=> $x = -7/5$

- ****REMEMBER, we <u>must check</u> the answer to logarithmic equations. In this case, x= -7/5 makes the argument of the logarithm negative so it does not work. The answer here is NO SOLUTION.
- If the equation contains logarithmic terms, each having the same base, AND terms without a log we use the definition of logarithms to rewrite the log as an exponent(y=log_ax means a^y=x). Ex. log (x+5)= 3

log (x+5)= 3 => 10³ = x+5 => 1000=x+5 => x=995

Ex.

We may have to first use the properties of logarithms to first obtain a <u>single</u> logarithmic term on one side and a single number on the other.

 $log_{6}(3+x) + log_{6}(x+4) = 1$ => $log_{6}[(3+x)(x+4)]=1$ => $6^{1}=(3+x)(x+4)$ => $6^{2}+7x+12$ => $x^{2}+7x+6=0$ => (x+6)(x+1) = 0=> x=-6, x=-1.... but x=-6 doesn't check. => x=-1